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In many realistic fluid-dynamical simulations the specification of the boundary
conditions, the error sources, and the number of time steps to reach a steady state
are important practical considerations. In this paper we study these issues in the case
of the lattice-BGK model. The objective is to present a comprehensive overview of
some pitfalls and shortcomings of the lattice-BGK method and to introduce some
new ideas useful in practical simulations. We begin with an evaluation of the widely
used bounce-back boundary condition in staircase geometries by simulating flow in
an inclined tube. It is shown that the bounce-back scheme is first-order accurate in
space when the location of the non-slip wall is assumed to be at the boundary nodes.
Moreover, for a specific inclination angle of 45 degrees, the scheme is found to be
second-order accurate when the location of the non-slip velocity is fitted halfway
between the last fluid nodes and the first solid nodes. The error as a function of the
relaxation parameter is in that case qualitatively similar to that of flat walls. Next,

a comparison of simulations of fluid flow by means of pressure boundaries and by
means of body force is presented. A good agreement between these two boundary
conditions has been found in the creeping-flow regime. For higher Reynolds numbers
differences have been found that are probably caused by problems associated with
the pressure boundaries. Furthermore, two widely used 3D models, n@x@hy

and D3Qq, are analysed. It is shown that tii Qs model may induce artificial
checkerboard invariants due to the connectivity of the lattice. Finally, a new iterative
method, which significantly reduces the saturation time, is presented and validated
on different benchmark problems. 1999 Academic Press
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I. INTRODUCTION

The lattice-Boltzmann method [1-4] is a mesoscopic approach based on the kin
Boltzmann equation for simulating fluid flow. In this method fluid is modeled by particle
moving on aregular lattice. At each time step particles propagate to neighboring lattice pa
and re-distribute their velocities in a local collision phase. This model has been success!
used for simulating many complex fluid-dynamical problems, such as suspension fl
multi-phase flow, and fluid flow in porous media, which are quite difficult to simulate k
conventional methods [3]. Moreover, the inherent locality of the update rules makes it id
for parallel computing [5].

During the past few years much progress has been made in the development of the la
Boltzmann method. Different models for simulating a wide variety of physical systems he
been developed [1-3, 6-10, 12, 13], various ways of imposing boundary conditions h
been proposed [14-19], and lately several schemes based on non-uniform lattices have
reported [21-23]. In this article we study some important aspects which are of pract
significance. We will focus our attention on the boundary conditions, the regularly used
models, and the saturation time (that is, the number of time steps needed to reach a si
state) of the model.

The actual specification of the boundary conditions in lattice-Boltzmann simulations t
attracted much attention. Previous studies show that the effect of the bounce-back |
which is widely used to model a solid wall, is certainly not trivial [15-17, 24]. We stud
the behavior of this boundary condition for staircase boundaries. Furthermore, in m
lattice-Boltzmann simulations fluid is driven by a body force [25]. This approach is we
suited for periodic geometries. More sophisticated pressure- and velocity-boundaries |
been proposed by several authors to model the inlets and outlets of non-periodic sys!
[26, 27]. We present a comparison of the body force and pressure boundaries in ord
gain more insight into the accuracy of these approaches.

In 3D lattice-Boltzmann simulations the regularly used models ardg@;s and the
D3Q19 model (hereD denotes the dimensionality of the problem a@ds the number
of bonds per lattice point) [9]. We will show that, in t#; Q15 model, there can appear
checkerboarding in the fluid momentum. In some cases this unphysical effect seems t
suppressed by boundaries. We will also discuss in some detail the numerical accurac
these models.

As most numerical algorithms, the standard lattice-Boltzmann scheme also has pote
shortcomings. For instance, in many cases the number of time steps needed to reac
steady state is very high. It can be argued that this is a direct consequence of the tran
nature of the scheme. Here, we will present a new technique, namely the Iterative |
mentum Relaxation technique (IMR), which can significantly reduce the saturation time
simulations driven by a body force.

In Section Il we first review the basics of the lattice-Boltzmann method. In Section 111w
discuss the bounce-back boundary condition and the accuracy of the body-force met
In Section IV we study various 3D models and, especially, the checkerboard effect. Fine
in Section V, we present the IMR technique.

Il. THE LATTICE-BOLTZMANN METHOD

Basically, the time evolution of the lattice-Boltzmann model consists of a propagati
phase, where particles move along lattice bonds from a lattice node to one of its neight
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and a collision phase with a local redistribution of the particle densities subject to con:
vation of mass and momentum. The simplest and currently widely used lattice-Boltzmé
model is the so-called lattice-BGK (Bhatnagar—Gross—Krook) model. Here the collisi
operator is based on a single-time relaxation to the local equilibrium distribution [2, 9].
In the literature different formulations of the lattice-BGK model can be found. The di
ferences lie, e.g., in the connectivity of the lattice used. In two dimensions 7 or 9 links |
lattice point (theD, Q7 and D, Qg models, respectively) are frequently used, while in three
dimensions 15 or 19 links per lattice point (tbgQ15 andD3 Q19 models, respectively) are
regularly used, in addition to models without rest particles Rg®14 andD3 Q15 models).
In this paper thdd, Qg model is used in the two-dimensional simulations, whereas in thre
dimensions thé®3; Q15 and theD3 Q19 models will be considered. In tH2, Qg model each
lattice point is connected to its eight nearest and diagonal neighbors. Dg@g model
each lattice pointis connected toits six nearest and twelve diagonal neighbors at a distan
V2, while in theD3; Q15 model each lattice pointis connected to its six nearest and eight diz
onal neighbors at a distanceB (see Fig. 6). Rest particles are included in all three model
The time evolution of the lattice-BGK model is given by [9]

fr 4o t+D = G004+ - (90,0 - fir,0), (1)

whereg; is the ith link (bond),f; (r, t) is the density of particles moving in tloedirection,

7 is the BGK relaxation parameter, aripﬁo)(r, t) is the equilibrium distribution function
towards which the particle population is relaxed. The hydrodynamic fields, such as
densityp and the velocity, are obtained from moments of the discrete velocity distributiol
fi(r,t),

SN, it
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N
pr,y=>) fir,ty and vt =
i=0
whereN is the number of links per lattice point.
The equilibrium distribution function can be chosen in many ways. A common choice
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wheret; is a weight factor depending on the length of the vectpandcs is the speed of
sound. For the weight factors used in the different models see Table I.

TABLE |
The Coefficientst; in the Equilibrium Distribution Function f©
for the Different Lattice-BGK Models [9, 29]

Model 0 | [ If
D2Qo 5 s % 0
D3 Qis : s 0 %
DsQuo 3 i % 0

Note.A O indicates a rest particle, | is for links pointing to the nearest neigh-
bors, Il is for the links pointing to the next-nearest neighbors, and Ill is for the
next-next-nearest neighbors.
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The lattice-Boltzmann models presented here yield the correct hydrodynamic beha
foranincompressible fluid in the limit of low Mach and Knudsen numbers [9]. The kinema
viscosity of the simulated fluid and the speed of sourd expressed in lattice units are
v =32 andcs = +/(1/3) [9]. The fluid pressurep(r, t) is given by

p(r,t) = c2(p(r,t) — p), 4)

wherep is the mean density of the fluid.

Ill. THE BOUNDARY CONDITIONS

The numerical quality of lattice-Boltzmann simulations is determined by the followir
error sources:

(1) Finite-size effects due to an insufficient number of lattice points compared
the mean free path of the fluid particles. These, Knudsen-like effects, depend on bott
relaxation parameter (controls the mean free path) and the lattice resolution [27].

(2) Compressibility errors. Compressibility effects are caused by the fact that in t
lattice-Boltzmann method small fluctuations in the density are associated with variati
in pressure. The compressibility error is small for low Mach numbers [29].

(3) Boundary effects. In principle, the truncation error of the lattice-Boltzmann meth:
is second-order in space. However, the accuracy of the solution depends on the bour
conditions and is found to be only first-order in many cases [15-17, 19, 27]. Understanc
the effect of the boundary conditions is very important since they are crucial in many flu
dynamical simulations. In this section we will study boundary conditions for two commc
cases, hamely the bounce-back boundary condition at a solid wall and the body force, w
is often used as a substitute to pressure boundaries.

A. The Bounce-Back Boundary Condition

The bounce-back boundary rule is the simplest way to impose solid walls in lattic
Boltzmann simulations. Here, particles that meet a wall point are simply bounced b
with a reversed velocity. It is obvious that this rule leads to a non-slip boundary loca
somewhere betwedine wall nodes and the adjacent fluid nodes (in the literature this effe
is known as the shift of the boundary). More sophisticated boundaries, which model a n
slip boundary exactly at the wall node (the so-called second-order boundaries), have |
proposed by several authors [15-19, 27, 20]. Unfortunately most of them are restricte
regular geometries (like flat walls and octagonal objects) [15—17]. For practical simulatic
the bounce-back boundary is very attractive because it is a simple and computatior
efficient method for imposing non-slip walls with irregular geometries.

Most previous studies of bounce-back have considered only flat walls, although a
more detailed studies have also been published. Recently, an evaluation of the bounce:
method has been reported where the solutions obtained with the bounce-back rule
compared with those obtained with the finite-difference method for flow around octago
and circular objects [30]. In this analysis the location of the non-slip boundary was tf
taken to be at the wall node itself and the error in the solution was first-order converger
space. Here we will study the behavior of the bounce-back boundary for a similar stagge
geometry. Beside the standard analysis, where the location of the non-slip boundat
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FIG.1. Theinclined tube flow experiment for an inclination angle of 45 degrees. On the left the computatiol
grid is shown and on the right the location of the wall.

assumed to be at the wall node, our benchmark problem enables us to study the shift c
boundary for a specific staircase geometry, as will be shown in the following.

We chose the simple Poiseulle flow in a tilted channel as our benchmark problem. In:
case the analytical solution for the velocity profile is known, and the effect of the boun
back rule in a staircase boundary can be investigated by simulating fluid flow through
inclined tube (see Fig. 1a). The analytical solution for this problem (in lattice units) is giv

by
j2
Uj:Uo*(l—Iz), (5)

whereu; is the component of the velocity vector along the flow direction at a distance
from the center of the tubgjs the radius of the tube, ang is the maximum velocity [11].
The absolute and relative errors at Iocatiofbs, andejfe', respectively, are defined as

uj —uj
uj

abs __ X o rel __
€] = |uj — ujl, € =

: (6)

whereu;j is the simulated velocity at location

Periodic boundaries were imposed at the inlet and outlet of the tube, and a constant |
force was used to drive the flow (i.e., a fixed amount of momerdumas added at every
time step on each lattice point). The body force was directed along the flow direction,
periodic boundaries were implemented by taking into account the translation of the ir
and outlet in the vertical direction. The walls were modeled by the bounce-back bound
rule.

The mean relative error as a function of lattice spacing is shown in Fig. 2 for the stand
bounce-back analysis. In this figure we have included the results for the inclination ar
a =0, 15, 30, and 45 degrees. A first-order convergence of the mean relative error is fo
in all cases (a fit to the data points gives a slope-0f9). Furthermore, the error for the
staircase geometries is on the average 50% higher than for the flat walls. The relative ¢
close to the boundary nodes (very small velocities) is significantly higher than along
center of the tube. For staircase geometries, there is no clear dependence of the re
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FIG. 2. The mean-relative error in the inclined-tube flow simulations (angles 0, 15, 30, and 45 degrees)
the standard bounce-back analysis. Tube diameter is 10, 20, 30, and 40 latticeypei@i€)1, andr = 1.0. The
length of the tube is 40 lattice-points.

error on the inclination angle, because the differences between the relative esref 16y,
30, and 45 degrees are smaller than the fluctuations in the error along the tube. More
our results are of the same order as those of Galktaat. [30] for flow around octagonal
cylinders when similar error metrics are used (data not shown).

As discussed previously, the accuracy of the simulation is determined by the locatior
the non-slip wall. For tube flow in flat geometries, it has been shown both numerically &
analytically, that when the non-slip boundary is assumed to be in the middle of the first v
and the last fluid node, the error is second-order convergent [24]. In this case the ana
expression for the absolute error caused by the bounce-back boundary condition is g
by [24]

U — T — _uo(41:(4r -5 +3
o 32 —1)2

(7)

Notice that, according to Eq. (7), this “half-way shifted” wall is quite an accurate bounda
condition for practical values of the relaxation parameter [24]. Furthermore, the err
uj; —uj =0, when the relaxation parametetis- 1.07. We have found very good agreement
between our simulations and Eq. (7) (data now shown).

As a final case, we have studied whether such a shift of the boundary can be see
staircase geometries, by determining the error behavior as a function of the lattice din
sions and the relaxation parameter. We have restricted our analysis to an inclination a
of 45 degrees. The “half-way shifted” location of the wall is expected to differ somewh
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FIG. 3. (a) The mean-relative error on lattices with=7, 13, 25, and 50 lattice points. Square (slope of
the line is—2.0) and stars (slope is1.9) are the half-way shifted results for flat and 45 degrees inclined tube
respectivelyp, ~ 0.01, andr = 1.0. The length of the tube is 40 lattice-points. (b) The mean-relative error as
function of t for N =25 andv, = 0.1. The length of the tube is 40 lattice-points.

from that of a flat tube. In Fig. 1b we show the “half-way shifted” location of the wall
The staircase geometry is staggered between two straight lines (lines through the ty
and type-Q points in Fig. 1b). Therefore, the “half-way shifted” boundary is also staggel
between two straight lines (dashed lines in Fig. 1b). The location of the boundary is tal
as the average of these two lines (see the thick solid line in Fig. 1b).

The mean relative error as a function of lattice spacing is shown in Fig. 3a. In this figt
we have included two curves, namely the results for the flat tube and the inclined tu
experiment, where for both cases the wall is placed at the “half-way shifted” location.
both cases the error is second-order convergent (a fit to the data points gives an approxi
convergence of-1.9). Furthermore, we clearly see that the mean relative error for the fl
tube is somewhat smaller than that for the inclined tube. In Fig. 3b the error as a functiol
the relaxation parameter is shown. A qualitatively similar error behavior for the incline
and flat-tube flow (Eq. (7)) is found. For an increasing relaxation parameter, the error f
decreases and subsequently increases after some optimal value of the relaxation paral
Here we observe that, for practical values of the relaxation parameter, the “half-way shift
boundary is quite accurate. The optimal relaxation parameter in this case is approxime
1.55.

We have seen that the error due to staircased structure is on the average 50% highe
for flat geometries. For a specific case=£ 45 degrees), we have verified that the bounce
back boundary rule tends to generate an imaginary boundary, which is located betw
the last fluid node and the solid wall. For the general case it is expected that the e
location of the boundary will depend on the relaxation parameter and the geometry of
problem. We think that it is very difficult to predict the location of the non-slip wall for
arbitrary geometries. For geometries with finite curvatures, e.g., for spherical particles,
have found that the difference between the hydrodynamic radius and the actual radit
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quite small when the relaxation parameter is taken to .Be<@ < 1.3, and the particle
radius is expressed in the units of half lattice spacing (cf. Section 4). Also, we have rece
performed a detailed comparison between the lattice-Boltzmann method, the Finite Elen
method, and experimental data for fluid flow in a complex 3D chemical mixing reactor [3:
The geometry of the reactor consisted of a number of solid tubes in different orientati
and locations and was such that it promoted mixing of fluid flowing through it. The resu
of the lattice-Boltzmann simulations were quite satisfactory even on moderate lattic
Supported by these results, we thus conclude that in irregular geometries the bounce-
boundary is certainly very useful despite its simplicity. In some applications, howev
sufficient accuracy may only be obtained on large lattices. In such cases, the accuracy
be increased by locally refining the grid in the vicinity of solid walls.

B. Comparison between Body Force and Pressure Boundaries

Successful numerical simulation of practical fluid-flow problems requires that the veloc
and pressure boundary conditions have been set in a consistent way. However, gener
locity and pressure boundaries are still under further development for the lattice-Boltzm:
method [3, 10, 12, 13, 15-17, 19, 27, 34-36]. So far practical simulations have usu
included first-order velocity boundaries [29, 37], and a body force [3, 25, 31, 39] has off
been used instead of pressure boundaries in problems with a periodic geometry.

Consider, e.g., fluid flow through an infinite vertical array of cylinders, where presst
is kept constant in vertical planes in front and beyond the cylinders (see Fig. 4). Here,
use of body force instead of pressure boundaries is based on the assumption that the
of the external pressure for¢p; — p2)Lye = Qe is approximately constant everywhere
in the system. Provided that this indeed is the case, and that the densities at the inle
outlet surfaces are kept constant, pressure boundaries can be replaced with a global
force Qe that gives rise to an acceleratigg, of the fluid. Pressure fields are then obtainec
from the effective pressurgss, which is defined as

Peff = C2AP — pOX, (8

Ly

FIG. 4. One unitshellin a vertically infinite array of cylindets, andL, are the length and the width of the
unit shell, andp; and p, are the fluid pressures at the inlet and outlet, respectively.



490 KANDHAI ET AL.

wherex is the distance measured from the inlet of the system. Notice that, for a simple tt
flow, the body force approach is an accurate substitute to pressure boundaries in that
the velocity and pressure fields given by the two methods are identical.

In order to check the validity of the body-force approach, we simulated the system shc
in Fig. 4 with both the body force and the pressure boundaries. The simulation lattice \
Ly x Ly =300x 100 lattice points, the cylinder radiag was 5.5 lattice points, the center
of the cylinder was located 100 lattice points from the inlet, and periodic boundaries w
used in the y direction. The cylinder Reynolds number=RayU /v, was varied between
0 and 6 by adjusting the LBGK relaxation parametdretween 0.6 and 2.0.

In the body-force simulations periodic boundaries were used also in the x directi
Density, and thus effective pressure, were kept constant at the inlet and outlet. The f
momentum was also kept constant to prevent the cylinders from seeing their periodic ime
in the x direction. This was done as follows: after the propagation step the average f
densitiespi, and pou, and the average velocitieg, = Pin/ pin @and Vout= Pout/ pout, Were
first calculated at the inlet and outlet, respectively. (H&seandP,, are the corresponding
total fluid momenta.) Then the particle densitigsat the inlet and outlet were set to
fiin= fi(o) (Pin, Vin) and fi oyt = fi(o) (Pouts Vour), respectively.

Pressure boundaries were implemented by the method described in Ref. [27]. Bec
in both cases velocity and pressure can develop freely, and the channel is big comp
with the size of the cylinder (some preliminary finite-size simulations were performs
as a verification), the conditions close to the cylinders are very similar in both simu
tions.

Notice that, when the system is fully saturated, the drag force acting on the obste
completely cancels the effect of pressure or body force. So, if the pressure boundar
Ref. [27] is accurate, the two different methods should give equal drag forces, although
simulated velocity and pressure fields may be different.

In Table 1l we show for different Reynolds numbers the relative difference in the veloci
pressure, and the drag forces acting on the particle, between the pressure boundary al
body force simulations. The difference is calculated in a box ok 60 lattice spacings
around the obstacle. The relative error in the veloeifyis defined ag, = (vp — vp)/vp,
wherev, andvy, are the velocities of the pressure boundary and body force simulatior
respectively, and the relative error in the pressure is defined as

€p = (0P — SPefr) /3 P12, 9

TABLE Il
The Mean and Maximum Relative Error in the Velocity, e,, Pressure,ep,
and the Drag Forces Acting on the Particleegrag, between Pressure Boundary
and Body Force Simulations for Different Reynolds Numbers

Re 0 0.05 0.4 2 3 6
Meane, 0.33 0.34 0.33 0.34 1.36 2.2
Maxe, 0.81 0.96 0.79 0.86 235 62
Meane, 0.24 0.24 0.27 0.46 1.9 3.94
Max e, 0.97 0.90 0.92 1.92 6.2 14.1
€drag 12.10°%  8.10*%  73.10°  7.7-10 11 2.6

Note.The numbers are expressed in percentages.
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FIG.5. Comparison of relative error of velocity (a) and pressure (b) for body force and pressure boundar
The numbers are expressed Q00 in both cases. The flow is from left to right.

wheredp = pin — p anddpes= Pefiin — Peir @re the pressure differences between the inle
and a point(x, y) for the pressure boundary and body force simulations, respectively. \
chosespio = p1 — p2 as the reference scale instead pf because on many lattice points
8p was very close to zero. We clearly see that for<Rethe mean relative difference in
pressure and velocity is less than 1%. For higher Reynolds numbers bigger difference:
found. These are probably caused by problems related to the pressure boundary condi
because the drag in the pressure boundary simulations was not in good agreement wit
expected value, in contrast with the results of the body-force simulations.

In Fig. 5a we show the contour plot of the relative egpfor Re=0.4. The pressure
boundary simulations regularly gave a little smaller velocities, the average error be
l€y|lave=0.33%. The biggest differences in the velocities, name§9% and—0.74%,
were found at the up-stream and down-stream stagnation points, respectively. The cor
plot of ¢, is shown in Fig. 5b. Its average value wag|ave=0.27%. The maximum and
minimum values foe,, namely 0.87% ane-0.92%, are once again found at the stagnatior
points.

In addition to this benchmark, we studied a more complicated case, namely fluid fl
in a disordered porous medium composed of nonoverlapping cylinders. The radii of
cylinders wereag = 5.5 lattice spacings, the porosity of the medium was 0.8,7aad..0.
The lattice dimensions weis, x Ly, =500x 100, and the porous medium was placed at :
distance of 200 lattice spacings from the inlet and outlet. The obstacle Reynolds num|
were on average 0.003. The difference in the total drag given by the pressure boundary
body-force simulations was quite high, namely 4%. The average relative &ryrsand
leplavein the velocity and pressure fields were 4.2 and 2.2%, respectively, and the maxirr
errors of|e,| and|ep| were 28 and 4.3%. Thus, although the error in total drag was qui
big, the overall results were still quite satisfactory. In this paper we have used the drag fc
acting on the particle as a reference. More detailed comparison of the complete velo
and pressure profiles for body-force driven simulations with results of traditional methc
and experimental data of different problems for a wide range of Reynolds numbers ca
found in Refs. [32, 33].

We can conclude that, for small Reynolds numbers and simple geometries, the bc
force approach is quite an accurate substitute to pressure boundaries. However, for
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Reynolds-number flows, where nonlinear effects are dominant, and for more complice
geometries, more sophisticated pressure boundaries may still be needed.

IV. CHECKERBOARD EFFECT IN THE D3Qi14 AND D3Q;5 MODELS

The lattice-Boltzmann method was originally developed from the lattice-gas automz
The first lattice used in 3D simulations was thgQg lattice [1], which is a 3D projection
of the 4D FCHC lattice [3] used for 3D lattice-gas simulations (see Fig. 6a).

It was later realized that the relative freedom in choosing the lattice-Boltzmann equil
rium distribution function also gave some freedom in choosing the structure of the simt
tion lattice. As a result, th®3; Q15 model (see Fig. 6b) was developed [9]. TBeQ14 and
D3Q1g models are obtained from thi@; Q15 andD3 Q19 models, respectively, by excluding
the rest particles. However, the presence of rest particles is often desirable for improy
the accuracy of the model [40]. Also, for a small relaxation tim¢he rest particles may
be needed to stabilize the system [42]. Therefore[3k®,5 and D3 Q19 models are most
often used in practical simulations.

The computational and the memory requirements of the lattice-Boltzmann model sc
linearly with the number of fluid particles. TH23Q14 and D3 Q15 models are thus some-
what more efficient than th®3Q;3 and D3Q19 models. However, in thd3;Q.4 and
D3Q15 models, checkerboard behavior in the fluid momentum can occur, i.e., fluid
mentum may form unphysical regular patterns. We will demonstrate this below in the ¢
of saturation of a random velocity field and in the case of fluid flow around a spheric
obstacle.

Let us mark the lattice point§, j, k) by black colour ifi + j + k is odd, and by white
colour otherwise, thus forming a checkerboard pattern shown in Fig. 6 foDla@ o
and D3 Q35 models. To each lattice-Boltzmann fluid particle, we also assign the colour
the lattice point at which they reside in the beginning of the simulation. If there are |
obstacles in the system, it is easy to see that, inDB®14 model, the black and white
particle populations are completely independent of each other: the colour of the lat
point at which a given fluid particle resides changes at every time step (see Fig. 6b). /

FIG. 6. Lattice structures oD;Q19 and D3 Q15 lattice-BGK models. The checkerboard coloring is included
in the figures. On the left thB; Q9 model is shown and on the right tf® Qs model.
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consequence of this checkerboard effect, the total mass and momentum of the black
white particle populations are spurious invariants, i.e., unphysical conserved quantities ir
D3Q14 model. Similar spurious invariants are also found in the HPP lattice-gas model [2
These invariants can create unphysical hydrodynamic modes in the simulated system
for this reason they should be eliminated from the model [3]. Notice that, iD§@;s
model, the black and white populations mix immediately with each other. Consequer
there is no checkerboard effect in this model.

In the D3 Q15 model the black and white populations are not entirely independent as tt
are coupled through the rest particles. However, checkerboard effects may also here le
unphysical behavior. If the lattice is initialized with equilibrium distribution such that, e.g
the velocity is set toi, at black lattice points and 1o, at the white lattice points, whilei,|
is equal tolu,, |, it is easy to see that the total momenta of the black and white populatio
will be conserved quantities.

We studied the checkerboard effect by following the relaxation of a perturbed veloc
field with a constant initial density and with periodic boundaries imposed in all directior
We used two different lattices. In the first case the lattice dimensions wexel@& 10
lattice points. When a steady state was reached irDg1@;9 model, all components of
the particle momenta were found to oscillate at each lattice point between two values
Fig. 7a). Such oscillations are caused by the so-called staggered invariants [10]. They
be removed with proper initial conditions, and their effect can also be filtered out by av
aging the momenta over two steps. After time averaging the momentum field was unifo
as expected [10]. In thB3Q15 model, the fluid remained partially unmixed in the stead
state. After time averaging, two different values for the particle momenta were found in
lattice (see Fig. 7b), and each component of momentum was constant along lines pat
to the corresponding direction. The x component, e.g., was constant on lines parallel tc
x axis, and its distribution in the yz plane formed a checkerboard pattern. The relative
ference between the two values of the momentum varied in the simulations, being typic
0.5-3%.

Similar simulations were also performed on & 9 x 9 lattice. In this case the two
populations had additional mixing on the boundaries of the lattice, as the colouring r
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FIG. 7. Relaxation of the x components of the momenta of two next-nearest neighbors in the xy plane
a lattice of dimension 1& 10 x 10. On the left the right we show the time evolution of 1BgQ,¢ and D; Q5
models, respectively. The initial perturbed velocity field is the same in both models.
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FIG. 8. Relaxation of the x components of the momenta of two next-nearest neighbors in the xy plane c
9 x 9 x 9 lattice. On the left and right we show the time evolution of B,9 and D3 Q;s models, respectively.

was not continuous due to the length of the lattice being an odd number. As a result,
steady-state momentum field was uniform for both models even without time averagi
i.e., both the staggered invariants and the checkerboard effect were eliminated in the
However, the weak coupling between the black and white populations iD4Qes model
was still apparent in the time evolution of the relaxation process. This can be seen in Fic
where relaxation of the momenta of two next-nearest neighbors is shown in one direct
In the D3 Q15 model the relaxation process is significantly slower, and there are long-lasti
oscillations in the local values of the momentum in this case.

We also studied the checkerboard effect in the presence of solid walls. The first test ¢
was fluid flow in a rectangular duct. The duct dimensions were 30 lattice points,
the relaxation parameter was= 1.0, and bounce-back at the nodes was used on tt
solid walls. Periodic boundaries were used in the direction of flow driven by a bo
force. In this case no checkerboard effect were seen, and the average relative differ
|A,| =|(vo1e — va15)/vo1e| between the velocity fields given by th#; Q19 and D3 Q15
models was only 0.34%. (A detailed duct-flow comparison betweeb#lig s andD3; Q15
models has previously been reported in Ref. [27], wherdX$®@1g model was found to be
more accurate in general, while the results given byl€1s model were also found to
be satisfactory.)

The second test case was fluid flow around a sphere. The radius of the sphage-\6s
lattice points. In the first simulation, the lattice consisted ok38D x 30 lattice points, and
the relaxation parameter was=1.0. Bounce-back condition was used on the solid walls
and periodic boundaries were imposed in all directions. Flow was driven by a body for
In this case, the checkerboard effect did not lead to momentum oscillations, but appe:
instead as unphysical patterns in the velocity and pressure fields. We have observec
the velocity field of theD3;Q15 model includes horizontal patterns which are not founc
in the D3Q19 model. This kind of pattern is clearly seen in the values\ef shown in
Fig. 9a. Similar patterns were also seen in the valuesm{in this comparisom\p was
calculated from Eq. (8)). In Fig. 9b, the velocity profile at the inlet boundary is shown f
the two models. Itis evident that th&; Q19 model generates a very smooth profile, wherea
the D3Q15 model generates a profile staggered between two smooth curves. The ave
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FIG. 9. The results for fluid flow around a sphere. The velocity field in a plane which bisects the sphere
analyzed. Fluid is flowing from left to right, and periodic boundaries are used in both directions. (a) The rela
differenceAv between the velocity fields obtained by tBgQ,9 and D3 Q,5s models. The colours run from gray
to white with the scale-3.0% < Av < 3.0%. (b) The velocity profile at the inlet for both models. The solid line
and open boxes show the results for B, and D; Q15 models, respectively.

values of|Av|ave and |Ap|ave Were 2.5 and 3.9%, respectively. The difference betwee
the total momenta of the fluids was in steady state only 0.62%. For this reason, e.qg.,
hydrodynamic radia of the sphere (a detailed description of the determinati@i®found

in Ref. [10]) given by these models were very close to each otheDt@ s and D3 Q19
models gavea =5.50 anda =5.52, respectively. We performed similar simulations with
bounce back on the links, and on a lattice 0f<331 x 31 lattice points. Similar patterns
were seen also in these two cases.

We thus conclude that, in thB3 Q15 model, there is a checkerboard effect which may
appearinthe hydrodynamicfields. In some cases the boundaries can suppress this unph
effect. Furthermore, it does not have significant effect on global values such as the ave
fluid momentum. Therefore, in spite of its shortcomings,Bh€);5 model appears a viable
alternative for steady-state hydrodynamics.

As Fig. 8b shows, in dynamical systems (e.qg., in fluid-particle suspensions or in turbule
simulations) the checkerboard effect may slow down the relaxation of momentum and ¢
in principle, produce unphysical effects in the dynamics of the system. Notice, howe\
that the solid boundaries increase mixing also in@R€) ;s model in the case when bounce
back on the links is used at the boundaries.

V. THE ITERATIVE MOMENTUM RELAXATION (IMR) TECHNIQUE

In lattice-Boltzmann simulations, flow is often driven by a body force which is ke
constant during the simulation. Iteration is started with some initial velocity field. A steac
state solution is finally reached when the total body f@a@ecting on the fluid is completely
cancelled by the viscous friction fordedue to the walls and obstacles.

Fluid flow in random porous medium has been one important application of the lattic
Boltzmann method [25, 39, 41]. For such media, simple dimensional analysis suggests
for a constant body force, the saturation tiggneeded to reach the steady state is of th
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form [18]

tsat X Rgore/vs (10)

whereRyre is the characteristic length of the void pores in the systemyasithe viscosity

of the fluid. For systems with high porosipy saturation times can therefore be very long. In
some cases, tens of thousands of time steps may be needed. Itis thus evident that a co
body force may be computationally inefficient, especially when one is only interested
the steady-state solution. In standard computational fluid dynamics this problem car
overcome by solving the time independent flow rather than the complete Navier—Sto
equation.

In time-dependent flows, accurate initial conditions are needed [15], whereas in tir
independent flows properly chosen initial conditions may be used to speed up the satura
Such conditions may not be easily found. However, if essential dimensionless numbers,
the Reynolds number, are kept constant, simulations may first be carried out either ¢
smaller lattice or for a higher viscosity. In both cases the simulation time will be small
than in the original system. Due to discretization errors and finite size effects, the obtai
velocity and pressure fields may be quite inaccurate, but they can be used as good i
guesses for the final simulation.

We will show that the saturation time can also be reduced by using an Iterative Moment
Relaxation (IMR) technique, where the applied body force is adjusted during the iterat
depending on the change of fluid momentum at the iteration step considered.

In the beginning of an IMR simulation a flow is firstinitialized. After evegy,time steps,
the following iterative procedure (whekedenotes the iteration counter of the IMR-loop)
is repeated:

(1) Calculate the momentum chan@eP) of the fluid phase in the direction of the
body force during the next time step.

(2) Calculate the average momentum Idgs= Qx — (A P)k (Qk is the total body
force at the iteration stelg) of the fluid due to the viscous forces during this time step.

(3) Choose a new body force k1= Tk.

The new body forceQy,1 is let to accelerate the fluid duririgep, time steps before
proceeding from step (1). The simulation is carried out until the body fQrceaches an
acceptable degree of convergence.

To validate the IMR technique we have applied it to three benchmark problems, namr
flow around a sphere, the permeability of a 3D random fibre network (see Ref. [25]),
fluid flow in an SMRX static mixer reactor (see Ref. [32] for details). We have included tt
last benchmark, as it is one of the very few cases of fluid flow in complex geometries w
well documented results from traditional numerical methods and experimental data. In
these test cases we have usgg=50. Tests with some other valuestgf, did not show
significant improvements in the benefit gained by the IMR technique.

In our first benchmark the sphere radius \gs- 5.5 lattice points and the lattice dimen-
sions were 106 100x 100 lattice spacings. We performed simulations at two Reynolc
numbers, namely Re 0 (Stokes flow) and Re 1. In both cases the IMR method was
extremely efficient. One percent accuracy in the velocity and pressure fields was alre
obtained after 5000 time steps, whereas the constant body-force method would have req
180,000 times steps (data not shown).
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FIG. 10. The time evolution of the web permeabilityt)/ k(steady-state) when a constant body force (solid
line) or the IMR method (dashed line) is used. Permealility has been computed using the body force and total
fluid momentum at time stefp

In our second test case we computed the permeakil{ey measure for the fluid con-
ductivity through a porous material) of a random fiber web. The permeability can be co
puted from the expressido= (¢ Pvp)/(mq) whereP is the total fluid momentum in the
direction of the body forcem is the total mass of the fluig is the fluid density, and is
the body-force density in the fluid phase. In Fig. 10 we show the time evolution of the flt
momentum in a 408 400 x 60 lattice with a porosity o = 0.94, when a constant body
force (solid line) or the IMR method (dashed line) is used. It is evident that with the IM
method an accuracy of 1% in the permeability (and thus also in the body@)riseeached
in 7000 time steps, while the constant body-force method requires more than 18,000 f
steps for reaching the same level of accuracy.

Our last test case was fluid flow in a static mixer reactor (cf. Section 2 and Fig. 1
Here we have used as reference data the steady state solution of lattice-BGK simula
with a constant body-force. For an element discretization ok 56 x 56 lattice points,
1200 time steps were required to reach a stationary state wheh In Ref. [32] we have
shown in detail that these results were in good agreement with Finite Element calci
tions and experimental data. With the IMR technique 1% accuracy in the velocity and
pressure fields compared to our reference data, was already reached in 550 time ¢
whereas the constant body-force method required 1000 time steps to reach a simila
curacy. In Fig. 12 we show the relative difference (in %) of the mean velocity, betwe
the results of the IMR technique and our reference data. The mean velocity is compute
different cross-sections along the reactor after 500, 550, and 600 timesteps. The differ
is clearly less than 1%. Similar results were also found for the other Reynolds numk
(by using a nonzero initial velocity field in the IMR technique) provided that the flow i
laminar.

We conclude that at least in problems involving laminar flow, the IMR method can |
very efficient in decreasing the number of time steps needed to reach the steady state
benefit seems to depend on the complexity of the flow geometry.
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FIG. 11. The SMRX static mixer element. The reactor consists of an SMRX element placed in a rectangt
duct. The inlet and outlet sections are of the same size as the element itself. The flow is from left to right.
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FIG. 12. The relative difference (in %) of the mean velocity between the IMR technigue and the steady st
solution obtained by the constant body-force approach (1200 timesteps were required). The mean velocity is
puted at different cross-sections along the reactor. The relative differences at 500, 550, and 600 timesteps are s
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VI. CONCLUSIONS

In this paper we have addressed various issues related to the lattice-BGK method w
are important from a practical point of view. We first discussed the effect of the bount
back boundary condition (which is widely used to model solid walls) for regular stairca
boundaries. It was found that the error for staircased geometries is on the average 50% h
compared to that for flat walls. For a special case the bounce-back scheme was shown
second-order convergent when the non-slip boundary was taken in the middle of the <
and adjacent fluid nodes. The quality of the method was determined by the compatib
of the shifted walls (the so-called hydrodynamic geometry) and the real geometry.

In addition, we also considered boundaries which are responsible for driving a fl
between the inlet and outlet of the system. In this context we compared the well-knc
body-force approach with pressure boundaries. For low Reynolds numbers and sin
geometries good agreement between these approaches was found.

Apart from the evaluation of the boundary conditions, we studied two common impl
mentations of the lattice-Boltzmann model in 3D simulations. It was shown that within t
D3Q15 model, an unphysical checkerboard effect can be found, which generates spur
conservations of momentum and mass of two distinct populations of particles. For sc
stationary flows, this unphysical effect generates unphysical patterns in the hydrodyne
fields. The overall macroscopic behavior still seemed to be satisfactory.

Finally, we presented a new method for reducing the number of time steps thatis need
reach the steady state for body-force driven flows. In many lattice-Boltzmann simulatic
the complete time evolution of the system is computed with a constant body force star
from some initial velocity and pressure fields. The number of time steps which is requil
to reach the steady state can then be very large for systems with a small solid fraction
using the new Iterative Momentum Relaxation (IMR) scheme, the saturation time can
significantly reduced.
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